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Abstract. This paper investigates the evolution of defects in two-dimensional (2D) wet foams
by using the dynamic bubble simulation approach. Two defect types are considered: a single large
bubble, and a cluster of small bubbles inserted in an otherwise monodisperse hexagonal lattice. In
the case of a single large defect bubble, the disorder of the cluster associated with the defect is
seen to increase and peak before returning to a state having a degree of order different from that of
the disordered foam scaling state. This long-timescale behaviour agrees with recent 2D wet-foam
experiments yet disagrees with the majority of existing simulations on dry foam. The inclusion of
a finite liquid content in the present simulations is identified as a possible reason for the improved
predictions. In the case of a defect of small bubbles, coarsening trends observed in experiments are
reproduced. Unlike the case for a single large bubble defect, no peak was observed in the disorder
of the bubble cluster.

1. Introduction

The evolution of a defect in an otherwise perfect 2D monodisperse bubble lattice has been
receiving substantial attention in the recent literature. This is because the evolution of defects
represents the initial stage of foam coarsening. In particular, the case of a single large bubble
in an otherwise monodisperse hexagonal bubble lattice is currently being scrutinized due to
the unexpected results from simulations performed by Levitan (1994). Using a mean-field
approach, Levitan found that the second distribution moment of the number of neighbours
per bubble,µ2, for bubbles within the cluster of bubbles disturbed by the defect seed bubble,
reached a constant value. Levitan’s result was in contrast to earlier expectations (Weaire 1995).
On the basis of simulations (Weaire and Lei 1990, Herdtle 1991) and experiments (Aboav 1980,
Stavans and Glazier 1989), which indicated that high values ofµ2 may be achieved, it was
believed thatµ2 would grow indefinitely, or until the entire foam system reached a scaling
state.

In the experiments of Stavans and Glazier (1989),µ2 was seen to reach a maximum of
∼2.6 for a nearly ordered hexagonal foam dispersed with large defects, before settling to a
scaling state withµ2 = 1.4± 0.1. When Stavans and Glazier started their experiments with
a very disordered foam, a scaling regime was observed having the sameµ2 as the scaling
regime of the initially ordered system. It was concluded that the scaling state occurred after
all hexagonal regions, in the initially ordered foam, had been consumed by the defect sites.
From the results of Stavans and Glazier (1989), who reportedµ2 for the entire system, it can
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be inferred that the initial elevated value ofµ2 was due to the evolution of the scattered defects
in the otherwise ordered lattice. Hence, recent simulations and experiments have concentrated
on the evolution of a single defect, as do the present simulations.

Stavans and Glazier (1989) also reported variations of Plateau border angles away from
120◦. The result of these angle variations was to discourage the appearance of bubbles with a
large number of neighbours. This observation seems to contradict the conclusion often drawn
from this study thatµ2 grows indefinitely. Instead it suggests that for real foams containing
a finite liquid volume,µ2 may not grow indefinitely, as there is an upper limit to the range of
possible bubble sizes.

Another experimental result which has been used to infer an open-ended growth ofµ2

is that of Aboav (1980). Aboav did not see a scaling state, withµ2 constantly increasing,
eventually reaching 2.86 at the end of the experimental data set. Stavans and Glazier (1989)
suggest that Aboav’s failure to observe a scaling state was due to limitations in experiment
duration.

Following Levitan’s simulation results (Levitan 1994), a number of authors have made
efforts to determine the origin of the discrepancy between Levitan’s results and the expectations
of other researchers. In the direct simulations of Ruskin and Feng (1995), Jianget al (1995),
and Chae and Tabor (1997),µ2 was seen to grow for the bubble cluster and for the entire bubble
foam system, and the number of neighbours of the initial defect bubble grows indefinitely (see
figure 1(a)). That is, no scaling state such as that proposed by Levitan was observed. However,
Jianget al(1995) found that when the original large bubble was excluded from the evaluation of
µ2 for the bubble cluster, a special scaling state emerged with〈n〉 = 5.5 andµ2 = 0.71±0.17.
In agreement with the direct simulations of Ruskin and Feng (1995) and Jianget al (1995),
Vaz and Fortes (1997) observed, in their 2D bubble raft experiments, no scaling state for either
the bubble cluster or the entire foam system. They did however confirm the result of Jiang
et al (1995), that a special scaling state exists for the bubble cluster with the original defect
bubble excluded. In particular, Vaz and Fortes (1997) found that for the bubbles in the special
scaling state,〈n〉 = 5.2–5.6 andµ2 = 0.5–1.5.

In recent experiments, Vaz and Fortes (1997), as well as Abd el Kader and Earnshaw (1997,
1998), used 2D bubble rafts to study a number of defect types, including a single seed bubble
defect; see figure 1(b). Their experiments were limited in duration due to film breakdown and
impingement of other defects on the defect studied. Therefore, these authors were unable to
study experimentally the evolution of bubble defects at the longer times typical of simulations.

Another difference between the experiments of Vaz and Fortes (1997) and Abd el Kader
and Earnshaw (1997, 1998) and previous simulations of the evolution of bubble defects is
that, in experiments, the foam has a finite liquid content. Hence in experimental wet foams,
vertex angles are not limited to 120◦, an assumption that most previous simulations on defect
evolution have made. Vertex angles of 120◦ imply dry foams. The present simulations however
incorporate a finite liquid content allowing direct comparisons to be made with the experiments
of Vaz and Fortes (1997) and Abd el Kader and Earnshaw (1997).

Most recently, Abd el Kader and Earnshaw (1998) reported on their bubble raft experiments
carried out for longer timescales than earlier experiments (Vaz and Fortes 1997, Abd el Kader
and Earnshaw 1997). Abd el Kader and Earnshaw (1998) found evidence to suggest thatµ2

does not grow indefinitely as was expected from earlier experiments and simulations. These
authors also reported that both the number of neighbours of the defect bubble andµ2 for the
bubble cluster do not increase indefinitely but fluctuate about constant values at long timescales,
in direct contradiction to simulations of defect growth in 2D dry foams; see figure 1. Abd
el Kader and Earnshaw (1998) suggested that both a finite liquid content and small statistical
sample due to the finite size of a cluster were responsible for the difference between their
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Figure 1. Snapshots of the evolution of a type 1 defect from (a) the dry-foam simulations of Chae
and Tabor (1997), and (b) the wet-foam experiments of Abd el Kader and Earnshaw (1998). Dry-
foam simulations predict that the number of neighbours of the defect bubble increase indefinitely,
which also forcesµ2 of the cluster to increase indefinitely.

experiments and previous models.
In the last four years, a 2D bubble dynamics model was introduced by Durian (1995, 1997)

to incorporate polydispersity and a finite liquid fraction into a simple simulation approach.
Using a variation of Durian’s 2D bubble dynamics model, in this paper we examine the
evolution of two defect types, including a single large bubble ofR = 1.5〈R〉in and a cluster of
bubbles of radiusR = 0.85〈R〉in, inserted in a monodisperse lattice. Note that〈R〉in denotes
the average bubble radius of the initial bubble size distribution.
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2. The bubble dynamics and inter-bubble gas diffusion models

The bubble dynamics model (Durian 1995, 1997) consists of a system of circular discs, with
each disc interacting with surrounding discs via a repulsive force proportional to the degree of
disc overlap. Bubble motion is evaluated similarly to molecular dynamics simulations (Allen
and Tildesley 1992), that is, by applying Newton’s second law of motion to each bubble. In
addition to simplicity, there are many advantages of this bubble dynamics model over earlier
models of foam, including the applicability of the model to 3D foam, the ease of accounting
for a distribution of bubble sizes, and a finite liquid fraction in the simulation. Moreover, it is
unnecessary to explicitly define and control the many possible bubble rearrangement processes,
and various dissipation mechanisms are easily incorporated into the simulations.

Durian’s model for bubble dynamics assumes that the effect of inertia on bubble motion
may be neglected because of the very small mass that can be associated with bubbles. Any
inertial effects are insignificant in comparison to the effects of inter-bubble compression forces
and to the dissipation due to shearing in the thin film separating the bubbles. A quasi-static
equation for bubble motion can be written as

Evi = 1

b

N∑
j=1
j 6=i

EFij (1)

whereEvi is the velocity of theith bubble, EFij denotes the compression force between theith
andj th bubbles. The constantb originates from shearing in thin films between bubbles and is
defined by the surface area multiplied by the ratio of the liquid-phase viscosity to the thickness
of the thin film. The summation is only performed over contacting or overlapping bubbles.
When bubbles move according to equation (1), on average, they move in a direction which
minimizes the force per bubble. If a system of bubbles is allowed to come to equilibrium by
following equation (1), the excess surface energy due to bubble compression tends to a local
minimum. Note that in equation (1), the effect of the relative motion of neighbouring bubbles
is assumed to be insignificant in comparison to compression forces.

The interaction force between a bubble pair is modelled as being spring-like, that is, the
force between contacting bubbles is proportional to the degree of overlap of the circular discs.
This spring force is a function of the relative bubble positions and radii only:

EFij = F0ξij
Eri − Erj∣∣Eri − Erj ∣∣ (2)

whereF0 ' σ 〈R〉 and the non-dimensional compression of the overlapping bubble pair is

ξij =
Ri +Rj −

∣∣Eri − Erj ∣∣
Ri +Rj

. (3)

Initially bubbles are positioned on a 2D hexagonal lattice with lattice spacing greater than
the maximum bubble diameter. Bubbles are then allocated radii as required by a simulation, and
the volume of the sparse cubic lattice is decreased until the desired gas fraction is achieved. The
resulting system is allowed to relax to minimize bubble overlap. This is done by determining
bubble velocities from equation (1), and then using

Eri(t +1t) = Eri(t) + 0.5[Evi(t) + Evi(t +1t)]1t

to calculate the new bubble positions. The procedure for equilibrating the system is repeated
until the velocity of each bubble is zero to within numerical accuracy. A characteristic timescale
for bubble rearrangements may be defined asτb = b〈R〉in/F0. The time step1t was chosen
small enough so as not to affect the behaviour of the bubble system. For our system we have
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setb〈R〉in/F0 = 1, and1t 6 0.1. To minimize the effects of a finite system size, periodic
boundaries are used in all directions and simulations are stopped before the growing defect
reaches the edge of the simulation area.

The inter-bubble gas diffusion is modelled as follows. The transfer of gas between bubbles
in the model takes place between neighbouring bubbles only. The rate of transfer is assumed
to be proportional to the difference in pressure between contacting bubbles, and the excess
pressure (pressure above atmospheric pressure due to surface tension) in a bubble in our wet-
foam model is assumed to be inversely proportional to the bubble radius. The number of moles
of gas in a bubble is calculated from the ideal-gas law by noting that bubble pressure does not
differ substantially from atmospheric pressure. The following expression for the transfer of
gas between two contacting bubbles at each time step can then be obtained:

dVij
dt
= KAij

(
1

Rj
− 1

Ri

)
(4)

where

K = 2JσRGT

P0
. (5)

In equations (4) and (5),V denotes the volume of gas transferred between the two bubbles in a
bubble pair,σ is the surface tension,T symbolizes temperature,P0 is the atmospheric pressure,
RG stands for the gas constant,J is the effective permeability of gas (the overall mass-transfer
coefficient) defined as the reciprocal of the sum of resistances due to mass transfer in the
lamellae and the boundary layers of the two contacting bubbles, and finallyAij signifies the
area of the thin film between bubblesi andj . In 2D, we approximateAij by the line defined by
the intersection of the two bubbles multiplied by a unit length. (Note that in 2D the simulations
are actually conducted for interacting parallel cylinders.) From geometrical considerations we
obtain

Aij = 2Ri
√
G(2−G) (6)

where

G = ξij (2Rj − (Ri +Rj)ξij )

2Ri(1− ξij ) (7)

andξij is defined in equation (3). After some cumbersome but straightforward algebra, equ-
ation (6) can be shown to be symmetric, that isAij = Aji . The set of equations for all bubble
pairs (equation (4)) conserves the gas volume of the bubble system, and therefore the gas
fraction of the foam is maintained.

In the bubble dynamics model it is possible that a small number of small bubbles
(<1%) may have no contacting neighbours. These bubbles are unable to exchange gas with
surrounding bubbles by following equation (4). This leads to the appearance of a large number
of very small bubbles which do not vanish in the course of simulations. To avoid this situation
and to involve the small bubbles with no contacting neighbours in the transfer of gas, the
average pressure of all bubbles in the system is determined and the gas exchange is made
according to an equivalent average neighbour pressure. The expression for this process is

dRi
dt
= K

(〈
1

Rj

〉
− 1

Ri

)
. (8)

In this case the gas transfer occurs through the entire bubble surface area. Equation (8) is
only applied to the small number of bubbles with no contacting neighbours. Unfortunately,
equation (8) does not conserve the foam gas fraction. Therefore, a small readjustment is made
to the volume of all bubbles, by an amount proportional to individual bubble radii.
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A singularity in the bubble internal pressure for bubbles withR → 0 is avoided by not
allowing a bubble to exist if its radius is below a critical value. This occurs in real foams as well,
since bubbles dissolve completely once they become very small. The minimum bubble radius
is set to 0.1〈R〉in. When a bubble radius falls below the cut-off threshold, the bubble disappears
and the bubble gas (or area) is returned to all remaining bubbles at a fraction proportional to
the individual bubble size.

The units ofK are m2 s−1 and so in the simulations the timescale is made non-dimensional
according tot∗ = Kt/〈R〉2in. To avoid bubbles being enveloped by the growth of neighbouring
bubbles,K is chosen such that〈R〉2in/K is large in comparison to the timescale for bubble
rearrangement. In the present simulations,K = 0.0001.

3. Defect evolution predictions

In the following section the inter-bubble gas diffusion is investigated in 2D systems consisting
of monodisperse bubbles located on a lattice with a single dislocation. In all simulations, the
total amount of gas contained within the system is conserved.

In referring to different defect types we adopt the classification given by Vaz and Fortes
(1997). Type I defects refer to a single large bubble in an otherwise monodisperse lattice.
Type II defects come in two subcategories. Type IIA refers to a defect consisting of a cluster
of bubbles with radii both larger and smaller than the hexagonal lattice, but with an average
bubble area smaller than that of the surrounding lattice bubbles. Type IIB clusters are identified
by a cluster of bubbles exclusively smaller than the surrounding hexagonal lattice bubbles.

The following simulations are initialized with type I and type IIB defects. By investigating
the evolution of type IIB defects, the development of type IIA defects is examined by default,
as type IIB defects soon evolve to type IIA defects. In all cases, the bubble cluster associated
with the initial defect is defined as the group of bubbles of size and arrangement different
to that of the monodisperse hexagonal lattice. Note that initially the bubble systems are in
equilibrium; however, bubbles do not necessarily surround the defect bubbles symmetrically.
This lack of symmetry results in uneven diffusion between the initial defect cluster bubbles
and eventually the general disorder observed in figure 2.

There have been several definitions of the bubble cluster in previous studies. The consistent
feature of all bubble cluster definitions is their reliance on three well identifiable regions: (1)
the undisturbed lattice, (2) the disturbed bubbles near the defect bubble which vary in size
and in the number of neighbours from the bubbles in the surrounding lattice, and (3) the front
between regions (1) and (2). On the basis of these three distinct regions, bubble clusters have
been defined alternatively as the group of disturbed bubbles, the group of disturbed bubbles
plus the first layer of six-sided undisturbed bubbles, and the group of bubbles within a disturbed
circular front centred on the defect bubble. Each particular definition of a bubble cluster will
give different values of the average number of neighbours in the cluster and the disorder. For
this reason, only qualitative comparisons can be drawn among previous studies.

In the present study a bubble is included in the cluster if it satisfies either of the following
criteria: |Ri − R0| > 0.1; 0.001 6 |Ri − R0| 6 0.1 andni 6= 6 (whereR0 is the radius
of a bubble in the undisturbed lattice). The second criterion is used to mimic experimental
determination of the cluster. In experiments, it is very difficult to distinguish between bubble
sizes; however, the number of bubble neighbours is easily determined. Hence the bubble
cluster is defined by the outer circle of bubbles which have both size and number of neighbours
different from the surrounding periodic lattice. Note that it is possible for a bubble to have
Ri = R0 or 0.0016 |Ri − R0| 6 0.1 andni = 6 well within the cluster, and therefore be
excluded from calculations. However, this occurs infrequently and has no effect on the results.
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t*  = 0 t*  = 2

t*  = 4 t*  = 8

t*  = 16 t*  = 32

Figure 2. Snapshots in time of the evolution of a type I defect in a 2D monodisperse foam using
the bubble dynamics model;Nin = 1020,φ = 0.95, initial defect radius= 1.5〈R〉in.

3.1. Type I defects

It is seen for the type I defect depicted in figure 2 that initially, as the defect bubble grows,
the neighbouring bubbles in direct contact with the initial defect seed bubble begin to shrink.
It is convenient to refer to these neighbouring bubbles as the first-shell bubbles. In the same
fashion, bubbles in direct contact with the first-shell bubbles, but with no contact with the
defect seed bubble, are referred to as the second-shell bubbles. As bubbles in the first shell
shrink, the centre defect and bubbles in the second shell grow, on average. The oscillations in
bubble size with alternate shells are restricted to the bubble cluster, and the effect soon becomes
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lost as bubble motion causes inter-shell mixing. Eventually, the predominant pattern displayed
is a rapid decrease in bubble sizes in a radial direction away from the centre defect bubble.
The results presented in figure 2 are in qualitative agreement with the experimental findings
presented in figure 1(b). Compare, for example, figure 2 (t∗ = 4 andt∗ = 8) with figure 1(b)
(second and third snapshots). As reported in the introduction, previous numerical models of
dry foams are not able to yield the coarsening behaviour observed in wet-foam experiments
and in the present study on wet foams.

The increase in the number of bubbles in the cluster, the growth of the average bubble
size in the cluster and the growth of the original defect bubble are shown in figures 3–5. Due
to the localized inter-bubble diffusion aftert∗ = 7, large bubbles form around the centre
defect bubble. As the effect of the formation of these secondary large bubbles, the number
of neighbours of the original defect bubble is limited. The maximum number of neighbours
for the centre defect bubble occurs att∗ = 4, whenn = 12 (see figure 6). Aftert∗ = 7, the
number of neighbours for the centre defect bubble oscillates between 9 and 10.
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Figure 3. Growth of the number of bubbles in the cluster associated with the type I defect.

Equation (9), derived from geometrical considerations illustrated in figure 7, approximates
the average number of neighbours for a bubble as a function of the defect bubble radiusRi and
average radius of neighbouring bubbles〈R〉:

ni = 360◦
/

cos−1

(
1− 2〈R〉2

(Ri + 〈R〉)2
)
. (9)

From equation (9), it is seen that the number of neighbours of a defect bubble can be
related to the ratio between the size of the defect bubble and that of those surrounding it. In
our simulations, the number of neighbours of the defect seed bubble andµ2 for the cluster
initially increase until relatively large bubbles appear next to the seed bubble (see figures 6 and
8);µ2 denotes the second moment of the distribution of the number of contacting neighbours.
This behaviour has also been observed in the 2D wet-foam experiments of Abd el Kader and
Earnshaw (1998). Equation (9) predictsn = 10 for the defect bubble, with〈R〉 = 2 and
R = 4.5, which corresponds approximately to conditions att∗ = 20 (see figure 5). Note that
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Figure 4. Growth of the average bubble size in the cluster associated with a type I defect, including
and excluding the initial defect bubble.
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Figure 5. Growth in radius of the type I defect seed bubble.

if an average diffusion equation, such as equation (8), was used irrespective of the number of
neighbours, only two bubble sizes would be present. In this case, the number of neighbours
of the defect bubble andµ2 would grow indefinitely.

In their simulations of the evolution of a single bubble defect (see figure 1), Chae and
Tabor (1997) used a two-step model. In the first step, mass transfer from or to a given bubble
was calculated from von Neumann’s cell growth law. This was followed by a relaxation step,
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Figure 6. The change in the number of contacting bubbles for the original defect bubble in the
type I defect.

z2 = x2 + y2 - 2xy cosZ

Z

x

y

z

x = y ≅ Ri + <R>

z ≅ 2<R>

Number of neighbours for
bubble of radius Ri,
ni = 360o/Z

Ri

<R>

Figure 7. A diagram illustrating how the difference between the size of the central bubble and that
of the surrounding bubbles determines the number of contacting neighbours of the central bubble.

which included adjustments to lamellae (called edges in 2D geometry) and vertex movement.
The number of neighbours of a bubble generally changes during foam evolution. This was
handled in their model by T2 transformations (disappearance of a bubble) in the cell growth
stage and T1 transformations (the neighbours change, which occurs when two bubbles come
together by pushing the other two bubbles apart) in the vertex movement stage. There was
a degree of arbitrariness in the model related to the implementation of T2 transformations of
four- and five-sided bubbles (called cells in 2D geometry), leading to different foam evolution
trajectories. However, the major difference between Chae and Tabor’s work and the present
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Figure 8. Evolution of a type I defect—in particular, the evolution of the average number of
neighbours per bubble andµ2 for the bubble cluster, including and excluding the original defect
bubble, and the entire bubble system;Nin = 1020,φ = 0.95, initial defect radius= 1.5〈R〉in.

paper lies in the inclusion of liquid fraction in our model, resulting in a physically realistic
prediction of defect cluster evolution.

However, von Neumann’s law is only valid locally, that is for each cell separately, for
perfectly dry foam in which internal angles of cells are exactly 120◦. With an increasing liquid
fraction, the law loses its strictly local validity (Glazier and Weaire 1992) and then it ceases
to apply even on average. For liquid fractions considered in this work, the law is not valid at
all. In polydisperse, wet foams, bubble evolution is a result of direct gas diffusion between
neighbouring bubbles through thin films, with the internal angles of cells being away from their
equilibrium values of 120◦. More importantly in wet foams, the vertex movement together
with T1 and T2 transformations arise as a result of bubble motion in the liquid matrix and
there is nothing arbitrary about it. The motion of bubbles and their growth are governed by
the deterministic bubble evolution equations.

It is interesting to compare our results, suggesting that the number of neighbours of the
defect seed bubble is limited by the decrease in the ratio between the average neighbour bubble
size and the defect seed bubble size (figures 2 and 6), with those of Stavans and Glazier (1989).
Stavans and Glazier commented that variations of vertex angles away from 120◦ result in large
strain energies in the film structure, making the occurrence of many-sided bubbles unlikely. To
demonstrate this, they produced a large 20-sided bubble which displayed vertex angles distinct
from 120◦. Typically, a bubble of this type was observed to evolve to having 11 or 12 sides,
which incidentally compares well with results from our simulations, in which the number of
neighbours of the large defect seed bubble is between 9 and 12 (figure 6).

Images provided by Stavans and Glazier (1989), of the evolution of a large many-sided
bubble, clearly show that initially the bubble is surrounded by much smaller bubbles. However,
at the end of the evolution process, the size of the neighbouring bubbles relative to the large
bubble had decreased, along with the number of sides. This is consistent with the predictions
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of equation (9) for spherical bubbles. Also it can be shown (figure 7) that the greater the ratio
between bubble sizes in our simulation, the larger the vertex angle:

Vangle = 180◦ − cos−1

(
1− 2〈R〉2

(Ri + 〈R〉)2
)
. (10)

The average vertex angle predicted for the defect bubble, with〈R〉 = 2 andR = 4.5, is 144◦.
It is seen in figure 8 that, belowt∗ = 4, the second momentsµ2 for the entire system

and for the bubble cluster, including and excluding the seed defect bubble, increase as the
foam evolves. After an initial rise, the value ofµ2, for a cluster which excludes the seed
bubble, attains a value of 1.3±0.2 which is then maintained (or increases slightly) throughout
the simulation. The average number of neighbours per bubble for the cluster, including and
excluding the seed defect bubble, reaches a constant value of〈n〉 = 5.0 to 5.1. These results
agree with experiments (Vaz and Fortes 1997, Abd el Kader and Earnshaw 1997, 1998) and
the simulations of Ruskin and Feng (1995) and Jianget al (1995).

At t∗ = 4,µ2 for the cluster which includes the defect seed bubble reaches a maximum of
2.9 before returning, att∗ = 6, to a level similar to that for a cluster which excludes the seed
bubble(µ2 = 1.3±0.2). After t∗ = 6,µ2 rises for the entire bubble system. However, for the
cluster including the defect bubble, a transient state occurs in which the cluster’s disorder is
relatively stable (or increasing slowly) at a level lower than that of a polydisperse model foam
in a scaling state (Gardineret al (1999);µ2 = 2.1± 0.1). At long timescales (not shown),
µ2 for the cluster increases to match that of a polydisperse model foam in the scaling state, as
the cluster begins to resemble a polydisperse foam. The observation of a transient state is in
contrast to previous simulations, but it is however in agreement with recent experiments (Abd
el Kader and Earnshaw 1998). Experiments conducted at timescales similar to those used in
simulations are clearly required.

The majority of simulation studies including the present investigation find thatµ2 initially
increases monotonically. A similar behaviour is observed in short-lifetime experiments in
which the change in area of the defect bubble has less than doubled (Vaz and Fortes 1997,
Abd el Kader and Earnshaw 1997). A major difference occurs between long-time behaviour
of the defect cluster predicted by the present model and the results of the majority of previous
simulations. Previous simulations, excluding those of Levitan (1994), predict thatµ2 for the
entire bubble cluster increases indefinitely, with the number of neighbours of the defect bubble
also growing continuously. Recent long-timescale experiments on 2D wet foams (Abd el Kader
and Earnshaw 1998) reveal that the number of neighbours of the defect bubble is limited, as
isµ2, in agreement with our simulations. The agreement between the long-time behaviour of
our simulations and recent experiments may be due to the presence of a finite liquid fraction
in this study which, unlike previous simulations, is concerned with wet foams.

3.2. Type II defects

Type IIA and IIB defects have been investigated in the experiments of Vaz and Fortes (1997).
Vaz and Fortes found that type IIB defects soon evolve into type IIA defects. This occurs
because some of the small bubbles in the cluster liberate their gas to the nearby lattice bubbles
and disappear to leave a cluster of large bubbles. As illustrated in figure 9, the present
simulations reproduce the transition from type IIB to type IIA defects quite well.

The general long-time trend in the evolution of type IIA and IIB defects, as with type I
defects, displays a radial decrease in bubble size, centred about the initial defect seed cluster.
The number of bubbles and the average size of a cluster bubble generally increase with time,
as demonstrated in figures 10 and 11. A rapid initial increase in the average bubble size in
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Figure 9. Snapshots in time of the evolution of a type IIB defect in a 2D monodisperse foam;
Nin = 1020,φ = 0.95, initial defect cluster bubble radii= 0.85〈R〉in.

figure 11 represents the disappearance of the small cluster bubbles, liberating their gas to form
large bubbles.

Agreement between our simulations and the short-timescale experiments of Vaz and Fortes
(1997) is found with the size of the bubble cluster initially contracting before increasing.
At longer timescales we findµ2 reaching a constant level within a transient state, with
µ2 = 1.3± 0.3 (figure 12). This result is surprisingly similar to the case of a type I defect.
Again the transient value ofµ2 is less than that found in the scaling regime of polydisperse
foam ofµ2 = 2.1± 0.1. An explanation of this transient scaling regime in our defect clusters
is yet to surface.
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Figure 10. Growth of the number of bubbles in the cluster associated with the type IIB defect.
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Figure 11. Growth of the average bubble size in the cluster associated with a type IIB defect.

4. Conclusions

By basing the simulation on the bubble dynamics model we have been able to simulate 2D wet
foam undergoing coarsening. In particular, we have shown the evolution of defects in otherwise
monodisperse perfect bubble lattice. The bubble dynamics model governs the movement of
bubbles and hence it circumvents the need for the many types of bubble rearrangement events
to be considered explicitly. As the bubble dynamics model allows a finite liquid content to be
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Figure 12. Evolution of a type IIB defect—in particular, the evolution of the average number of
neighbours per bubble andµ2 for the bubble and the entire bubble system;Nin = 1020,φ = 0.95,
initial defect bubble radii= 0.85〈R〉in.

included in simulations, unlike previous dry-foam diffusion models, direct comparisons can
be made with the results from recent 2D wet-foam experiments.

The present model predicts that the disorder around a defect initially grows, before reaching
a regime characterized by a relatively constant value of the average number of neighbours and
µ2. In the transition between growth of disorder and relatively stable disorder, the disorder of
the cluster associated with the point defect may increase or decrease to levels different from
that of a foam in a scaling regime. These findings are generally consistent with long-timescale
experiments of Abd el Kader and Earnshaw (1998) but differ from predictions of previous
simulations performed on dry foams. Our result supports the hypothesis of Abd el Kader and
Earnshaw (1998) that differences between experiments and previous simulations may be due
to the liquid content of real foams.

In the wet-foam simulations and experiments, entire bubbles move to minimize compress-
ion or excess surface energy. The vertex movements, as well as T1 and T2 transformations
occur naturally, without arbitrariness, as a result of bubble motion. This is especially important
for a large growing bubble, which engenders movement of the surrounding bubbles. Finally,
we have indicated that von Neumann’s law is strictly valid for perfectly dry foams, which
are very difficult (if not impossible) to reproduce in experiments of single-defect evolution.
Consequently, the modelling of this evolution process must account for the liquid fraction, as
is done in the present study.
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Appendix. Nomenclature

In the following list of nomenclature, (—) indicates non-dimensional variables.

A surface area (m2)
b shearing constant used in equation (1) (kg s−1)
D bubble cluster diameter (m)
EFij force due to compression between theith andj th bubbles (N)
F0 spring force constant (N)
G constant defined by equation (7) and used in equation (6) (—)
J permeability coefficient (mol N−1 s−1)
K permeability constant (m2 s−1)
N number of bubbles in the simulation (—)
n number of bubbles contacting theith bubble (—)
〈n〉 average number of contacting neighbours per bubble (—)
P0 pressure in Plateau borders (Pa)
R bubble radius (m)
Er bubble position (m)
〈R〉 average bubble radius (m)
RG gas constant (N m mol−1 K−1)
R0 radius of an undisturbed lattice bubble (m)〈
1/Rj

〉
the equivalent average bubble radius to give the average internal bubble
pressure (m−1)

T temperature (K)
t time (s)
t∗ non-dimensional time (—)
V volume (m3)
Vangle vertex angle of a Plateau border (degrees)
Ev bubble velocity (m s−1)
φ gas fraction (—)
µ2 second moment of the distribution of the number of contacting

neighbours per bubble (—)
σ surface tension (N m−1)
τb bubble rearrangement timescale (s)
ξ non-dimensional compression (—)

Subscripts
i, j refer to bubblesi andj respectively
ij refers to the interaction between bubblesi andj
in refers to the initial value of a variable, i.e. that att = 0
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